The Grouped Author-Topic Model for Unsupervised Entity Resolution
نویسندگان
چکیده
This paper describes a generative approach for tackling the problem of identity resolution in a completely unsupervised context with no fixed assumption regarding the true number of identities. The problem of entity resolution involves associating different references to authors (in a paper’s author list, for example) with real underlying identities. The references may be written in differing forms or may have errors, and identical references may refer to different real identities. The approach taken here uses a generative model of both the abstract of a document and its list of authors to resolve identities in a corpus of documents. In the model, authors and topics are associated with latent groups. For each document, an abstract and an author list are generated conditioned on a given group. Results are presented on real-world datasets, and outperform the best performing unsupervised methods.
منابع مشابه
Corpus based coreference resolution for Farsi text
"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...
متن کاملA Latent Dirichlet Model for Unsupervised Entity Resolution
Entity resolution has received considerable attention in recent years. Given many references to underlying entities, the goal is to predict which references correspond to the same entity. We show how to extend the Latent Dirichlet Allocation model for this task and propose a probabilistic model for collective entity resolution for relational domains where references are connected to each other....
متن کاملA Latent Dirichlet Allocation Model for Entity Resolution
In this paper, we address the problem of entity resolution, where given many references to underlying objects, the task is to predict which references correspond to the same object. We propose a probabilistic model for collective entity resolution. Our approach differs from other recently proposed entity resolution approaches in that it is a) unsupervised, b) generative and c) introduces a hidd...
متن کاملThe Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution
This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model’s performance should take into account the transitive closure of its pairwise lin...
متن کاملUnsupervised Ranking Model for Entity Coreference Resolution
Coreference resolution is one of the first stages in deep language understanding and its importance has been well recognized in the natural language processing community. In this paper, we propose a generative, unsupervised ranking model for entity coreference resolution by introducing resolution mode variables. Our unsupervised system achieves 58.44% F1 score of the CoNLL metric on the English...
متن کامل